Основные химические и физические свойства гранулированного полиэтилена

Полиэтилен: свойства, области применения и структура потребления

Пн, 21 Январь 2008 | Тема: Сырье

Полиэтилен (ПЭ) относится к группе полиолефинов, которые представляют собой самый распространенный тип полимеров получаемых реакциями полимеризации и сополимеризации непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Химическая структура молекулы полиэтилена проста и представляет собою цепочку атомов углерода, к каждому из которых присоединены две молекулы водорода.

В зависимости от технологии полимеризации этилена, полиэтилен имеет различную плотность и классифицируется на полиэтилен низкой плотности (ПЭНП), полиэтилен высокой плотности (ПЭВП), линейный полиэтилен низкой плотности (ЛПЭНП) и др.

Полиэтилен высокой плотности (ПЭВП) производится путем полимеризации этилена при низком от 1 до 50 бар или среднем давлении от 30 до 40 атмосфер и температуре от 85° до 180 °С при помощи катализаторов Циглера-Натта (оксид хрома или оксид алюминия) и органического растворителя (анионная полимеризация). В России често применяется устаревшая аббревиатура – ПНД, которая означает, что полиэтилен был произведен при низком давлении.

Линейный полиэтилен низкой плотности (ЛПЭНП) получают на оборудовании синтеза ПЭНП с помощью высокопроизводительных систем катализаторов, путем полимеризации этилена при давлении в 30-40 атмосферах и температуре около 150 °С.

Относительно недавно начала применяться технология, где используются так называемые металлоценовые (ПЭ-М) катализаторы, которые позволяют добиться более высокой молекулярной массы полимера, это помогает увеличивает прочность изделия.

Химические и физические свойства полиэтилена

Сравнительная характеристика ПЭНП и ПЭВП

Полиэтилен

Молекулярная масса, г/моль

Плотность, г/см3

Температура плавления, 0С

Модуль упругости, МПа

V раст., МПа

Относ. удлинение, %

Низкой плотности (высокого давления)

Высокой плотности (низкого давления)

Наряду с кристаллической фазой всегда имеется аморфная, содержащая недостаточно упорядоченные участки макромолекул. Соотношение этих фаз зависит от способа получения ПЭ и условии его кристаллизации. Оно определяет и свойства полимера. Пленки из ПЭНП в 5-10 раз более проницаемы, чем пленки из ПЭВП.

Механические показатели ПЭ возрастают с увеличением плотности (степени кристалличности) и молекулярной массы. В виде тонких пленок ПЭ (особенно полимер низкой плотности) обладает большей гибкостью и некоторой прозрачностью, а в виде листов приобретает большую жесткость и непрозрачность.

Полиэтилен устойчив к ударным нагрузкам. Среди наиболее важных свойств полиэтилена можно отметить морозостойкость. Они могут эксплуатироваться при температурах от –70°С до 60 °С (ПЭНП) и до 100 °С (ПЭВП), некоторые марки сохраняют свои ценные свойства при температурах ниже –120°С.

Существенным недостатком полиэтилена является его быстрое старение, которое останавливают с помощью специальных добавок — противостарителей (фенолы, амины, газовая сажа). Показатель текучести расплава ПТР у ПЭНП выше, чем ПЭВП, поэтому он перерабатывается в изделия легче.

По электрическим свойствам ПЭ, как неполярный полимер, относится к высококачественным высокочастотным диэлектрикам, диэлектрическая проницаемость и тангенс угла диэлектрических потерь мало изменяются с изменением частоты электрического поля, температуры в пределах от минус 80 °С до 100 °С и влажности. Однако остатки катализатора в ПЭВП повышают тангенс угла диэлектрических потерь, особенно при изменении температуры, что приводит к некоторому ухудшению изоляционных свойств.

Области применения полиэтилена

Полиэтилен высокой плотности (ПЭВП)

Свойства ПЭВП сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, проницаемость для газов и паров.

У ПЭВП наблюдается высокая ползучесть при длительных нагрузках. Он имеет очень высокую химическую стойкость (больше, чем у ПЭНП) и обладает отличными диэлектрическими характеристиками. Биологически инертен. Легко перерабатывается.

Характеристики марочного ассортимента ПЭВП

(минимальные и максимальные значения для промышленных марок)

Показатели, ( при 23 °С)

Значения для ненаполненных марок

Полиэтилен высокой плотности применяется преимущественно для выпуска тары и упаковки. За рубежом примерно третья часть выпускаемого полимера используется для изготовления контейнеров выдувным формованием (емкости для пищевых продуктов, парфюмерно-косметических товаров, автомобильных и бытовых химикатов, топливных баков и бочек).

Полиэтилен низкой плотности (ПЭНП)

Полиэтилен низкой плотности отличается теплостойкостью без нагрузки до 60°С (для отдельных марок до 90 °С) и допускает охлаждение различных марок в диапазоне от –45 до –120 °С).

Свойства ПЭНП сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, трещиностойкость, проницаемость для газов и паров. ПЭНП склонен к растрескиванию при нагружении и не отличается стабильностью размеров.

ПЭНП обладает отличными диэлектрическими характеристиками, имеет очень высокую химическую стойкость, не стоек к жирам, маслам, не стоек к УФ-излучению, отличается повышенной радиационной стойкостью и биологически инертен. Легко перерабатывается.

Читайте также:
Стоит ли приобретать столешницы из мрамора или это деньги на ветер

Характеристики марочного ассортимента ПЭНП

Показатели, (при 23 °С)

Значения для ненаполненных марок

Полиэтилен низкой плотности используется в основном в производстве пищевых, технических, сельскохозяйственных пленок и для изоляции трубопроводов. В последние годы за рубежом наиболее активно растет объем потребления ПЭНП и производства линейного полиэтилена низкой плотности, который в ряде зарубежных стран в значительной степени вытеснил из основных сегментов рынка ПЭНП.

Линейный полиэтилен низкой плотности (ЛПЭНП)

Характеристики марочного ассортимента

Показатели, (при 23 °С)

Значения для ненаполненных марок

Структура потребления полиэтилена

Комплекс физико-механических, химических и диэлектрических свойств полиэтилена определяет его потребительские свойства и позволяет широко применять во многих отраслях промышленности (кабельной, радиотехнической, химической, легкой, медицине и др.).

Кабель с изоляцией из полиэтилена имеет преимущества по срав¬нению с каучуковой изоляцией. Он легок, более гибок и обладает большей электрической прочностью. Провод, покрытый тонким слоем полиэтилена, может иметь верхний слой из пластифицированного поливинилхлорида, образующего хорошую механическую защиту от повреждений.

В производстве кабелей находит применение ПЭНП, сшитый небольшими количествами (1-3 %) органических перекисей или облученный быстрыми электронами.

Пленки и листы. Пленки и листы могут быть изготовлены из ПЭ любой плотности. При получении тонких и эластичных пленок более широко применяется ПЭНП.

Пленки изготовляются двумя методами: экструзией расплавленного полимера через кольцевую щель с последующим раздувом или экструзией через плоскую щель с последующей вытяжкой. Они выпускаются толщиной 0,03-0,30 мм, шириной, до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.

Кроме тонких пленок, из ПЭ изготовляют листы толщиной 1-6 мм и шириной до 1400 мм, Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического к бытового назначения методом вакуумного формования.

Большая часть продукции из ПЭНП служит упаковочным материалом, конкурируя с другими пленками (целлофановой, поливинилхлоридной, поливинилиденхлоридной, поливинилфторидной, полиэтилентерефталатнсй, из поливинилового спирта и др.), меньшая часть используется для изготовления различных изделий (сумок, мешков, облицовки для ящиков, коробок и других видов тары).

Широко применяются пленки для упаковки замороженного мяса и птицы, при изготовлении аэростатов и баллонов для проведения метеорологических и других исследований верхних слоев атмосферы, защиты от коррозии магистральных нефте- и газопроводов. В сельском хозяйстве прозрачная пленка используется для замены стекла в теплицах и парниках. Черная пленка служит для покрытия почвы в целях задержания тепла при выращивании овощей, плодово-ягодных и бобовых культур, а также для выстилания силосных ям, дна водоемов и каналов. Все больше применяется полиэтиленовая пленка в качестве материала для крыш и стен при сооружении помещений для хранения урожая, сельскохозяйственных машин и другого оборудования.

Из полиэтиленовой пленки изготовляют предметы домашнего обихода: плащи, скатерти, гардины, салфетки, передники, косынки и т. п. Пленка может быть нанесена с одной стороны на различные материалы: бумагу, ткань, целлофан, металлическую фольгу.

Армированная полиэтиленовая пленка отличается большей прочностью, чем обычная пленка такой же толщины. Материал состоит из двух пленок, между которыми находятся армирующие нити из синтетических или природных волокон или редкая стеклянная ткань.

Из очень тонких армированных пленок изготовляют скатерти, а также пленки для теплиц; из более толстых пленок — мешки и упаковочный материал. Армированная пленка, упрочненная редкой стеклянной тканью, может быть применена для изготовления защитной одежды и использована в качестве обкладочного материала для различных емкостей.

На основе пленок из ПЭ могут быть изготовлены липкие (клеящие) пленки или ленты, пригодные для ремонта кабельных линий вы¬сокочастотной связи и для защиты стальных подземных трубопроводов от коррозии. Полиэтиленовые пленки и ленты с липким слоем содержат на одной стороне слой из низкомолекулярного полиизобутилена, иногда в смеси с бутилкаучуком. Выпускаются они толщиной 65-96 мкм, шириной 80-I50 мм.

ПЭНП и ПЭВП применяют и для защиты металлических изделий от коррозии. Защитный слой наносится методами газопламенного и вихревого напыления.

Полиэтиленовые трубы. Из всех видов пластмасс ПЭ нашел наибольшее применение для изготовления экструзии и центробежного литья труб, характеризующихся легкостью, коррозионной стойкостью, незначительным сопротивлением движению жидкости, простотой монтажа, гибкостью, морозостойкостью, легкостью сварки.

Непрерывным методом выпускаются трубы любой длины с внутренним диаметром 6-300 мм при толщине стенок 1,5-10 мм. Полиэтиленовые трубы небольшого диаметра наматываются на барабаны. Литьем под давлением изготовляют арматуру к трубам, которая включает коленчатые трубы, согнутые под углом 45 и 90 град; тройники, муфты, крестовины, патрубки. Трубы большого диаметра (до 1600 мм) с толщиной стенок до 25 мм получают методом центробежного литья.

Читайте также:
Эко-стиль в интерьере: правила оформления и детали

Полиэтиленовые трубы вследствие их химической стойкости и эластичности применяются для транспортировки воды, растворов солей и щелочей, кислот, различных жидкостей и газов в химической промышленности, для сооружения внутренней и внешней водопроводной сети, в ирригационных системах и дождевальных установках.

Трубы из ПЭНП могут работать при температурах до 60 0С, а из ПЭВП — до 100 0С. Такие трубы не разрушаются при низких температурах (до – 60 0С) и при замерзании воды; они не подвержены почвенной коррозии.

Выдувные и литьевые изделия. Из полиэтиленовых листов, полученных экструзией или прессованием, можно изготовить различные изделия штампованием, изгибанием по шаблону или вакуумформованием. Крупногабаритные изделия (лодки, ванны, баки и т. п.) также могут быть изготовлены из порошка полиэтилена путем его спекания на нагретой форме. Отдельные части изделий могут быть сварены при помощи струи горячего воздуха, нагретого до 250 0С.

Формованием и сваркой можно изготовить вентили, колпаки, конейнеры, части вентиляторов и насосов для кислот, мешалки, фильтры, различные емкости, ведра и т. п.

Одним из основных методов переработки ПЭ в изделия является метод литья под давлением. Большое распространение в фармацевтической и химической промышленности получили бутылки из полиэтиле¬на объемом от 25 до 5000 мл, а также посуда, игрушки, электротехнические изделия, решетчатые корзины и ящики.

Выбор того или иного технологического процесса определяется в первую очередь необходимостью получения марочного ассортимента с определенным комплексом свойств. Суспензионный метод целесообразен для производства полиэтилена трубных марок и марок полиэтилена, предназначенного для переработки экструзионным методом, а также для производства высокомолекулярного полиэтилена.

Самое важное о свойствах полиэтилена

Впервые полиэтилен был случайно получен одним из немецких инженеров в 1899 году. После, более тридцати лет этому веществу не уделяли должного внимания, но уже в начале 30-х годов из полимера стали производить телефонные кабели. Как сырьё для получения тары, полиэтилен начал использоваться только в начале 50-х годов XIX века.

Физические свойства полиэтилена

Полимеризованный этилен обладает большой термопластичностью. Тонкие пласты полимера целиком прозрачны, а при обыкновенных условиях – это белая масса, стойкая как к химическим воздействиям, так и к пониженным температурам. Полиэтилен не проводит электрический ток, амортизирует удары и при нагревании до восьмидесяти градусов Цельсия становится мягким, пластичным.

Получают главным образом два типа полиэтилена: высокого давления (имеет низкую плотность, примерно 900-930 кг/м ) – ПЭВД – изготавливается при высоком давлении; низкого давления – ПЭНД – соответственно производится при низком давлении (ρ от 940 до 960 кг/м ).

Разница в физических свойствах этих двух модификаций существенна: предел текучести у ПЭНД в два раза выше, чем у ПЭВД, как, собственно, теплопроводность и температура плавления.

Строение макромолекул полимера

Полимерные цепи полиэтилена ВД состоят примерно из 1000 звеньев мономеров и включают в себя боковые ответвления цепей С1 – С4. Полиэтилен НД содержит цепи, практически не включающие разветвлений, имеет кристаллическую структуру. Именно поэтому данная модификация полиэтилена имеет большую плотность, по сравнению с ПЭВД, который почти не содержит кристаллической сетки. Все свойства продукта из полимеризованного этилена будут напрямую зависеть от условий его изготовления и эксплуатации.

Химия полиэтилена

Его химические свойства зависят от модификации, плотности образца и его молекулярного веса. Полиэтилен горит светло-голубым пламенем, издавая запах горящей парафиновой свечи. Он не взаимодействует с основаниями, с ионными электролитами, а также с концентрированными растворами хлороводородной кислоты и HF. Полимер деструктурируется под действием газообразных Cl2 и F2 и их жидких аналогов, то же происходит при взаимодействии с концентрированной азотной кислотой (w>50%).

Полиэтилен не нейтрализует растворы марганцовки и Br2 x H20, устойчив к влиянию любых растворителей. Однако, уже при восьмидесяти градусах Цельсия разлагается под действием циклического гексана и CCl4. При подведении давления в несколько атмосфер, полимер растворяется в воде с t H2O = 180°C.

По истечении некоторого времени, полимер разрушается, образовывая перпендикулярные межцепные связи, становится хрупким и на доли процента увеличивается его прочность. Дестабилизированный полимер на открытом воздухе подвергается термостарению – процессу термоокисления и последующей деструкции. Процесс проходит по R-механизму с отщеплением R-CHO, R-CO-R, HOOH и других продуктов.

Полиэтилен не выделяет в окружающую среду никаких опасных веществ и поэтому безвреден для человеческого организма. Под действием солнечного света образец полимера подвергается фотостарению. Эффективной защитой полиэтилена от УФ воздействия послужат ароматические амины, фенолы и даже сажа.

Для улучшения эксплуатационных свойств полиэтилен можно подвергать модифицированию: хлорировать, фторировать, улучшать химическую стойкость и теплостойкость, уменьшить склонность к растрескиванию, проводить сополимеризацию для улучшения ударной вязкости.

Читайте также:
Какие ошибки монтажа приведут к неприятному запаху из мойки на кухне

Получение промышленными методами

Данный полимер в промышленности получают главным образом каталитической полимеризацией С2Н4:

  • полиэтилен ВД получают нагреванием этилена до значения в 473-523 К. Давление процесса доводят до 1,5-3 х 10 Па, проводя его под действием О2 или ROOH преимущественно в массообменных резервуарах. Механизм процесса является радикальным. Средняя молекулярная масса продукта достигает 500 тысяч с кристаллизацией в 60%. Чистое вещество – жидкость, которая в дальнейшем гранулируется;
  • полиэтилен СД выделяется в хлопьеподобный осадок при нагреве до 373 К и давлении 0.035 х 10 Па. В качестве катализатора в данном процессе используют смесь TiCl4 и AlR3. Кристалличность осадка достигает 90%, средняя молекулярная масса 400 тысяч единиц;
  • полиэтилен НД получают по специализированному механизму. Молярная масса обычно имеет значение от восьмидесяти до трёхсот тысяч единиц. Полиэтилен данного типа выделяют при t = 393-423 К, пониженном давлении в присутствии смеси хлорида титана и алкил-алюминатов.

Получить полимер в промышленности можно и иначе, например, действуя на этилен α- или β-излучением, но данный способ весьма редко используется при получении полиэтилена.

Полиэтилен, виды полиэтилена, физические , химические свойства, материалы из полиэтилена

Историческая справка.

Научное название полиэтилена – полиэтен. Полимер этилена (этена). был впервые получен немецким ученым Хансом фон Пехманом в 1898 г. Пехман при разогреве диазометана получил вещество – воскообразную субстанцию, в составе которой обнаружились цепи -CH2ю Ученые дали название новому материалу – полиметилен. Промышленный синтез полиэтилена был условно начат в 1933 г. Открытие сделали англичане Эрик Фосетт и Реджинальд Джибсон, сотрудники компании Imperial Chemical Industries (ICI). Полиэтилен был получен смешением этилена и бензойного альдегида. Реакция была инициирована присутствовавшей в аппарате примесью кислорода, поэтому повторить условия, было затруднительно. В 1935 г. химик Майкл Пёррин, создал промышленную технологию производства в 1939 г.

В наше время сырьем для получения полиэтилена служит простейший олефин – газ этилен. Полимеризация полиэтилена достигается различными способами – полимеризация радикалов, с помощью анионных и катионных добавок, ионной координацией. В результате получаются материалы с различными свойствами, которые зависят от протяженности и способа ветвления молекул, особенностей кристаллической структуры и молекулярного веса.

Виды полиэтилена

Полиэтилен– относится к термопластичным полимерам.

Физические свойства:
-диэлектрик;
-ударостойкость;
– низкая газо-паропроницаемость;
-лекгоплавкий;
-стоек к нагреванию в вакууме
-морозостоек (-70С);
-под действием ультрафиолетовых лучей- подвержен деструкции особенно при нагревании;
-без запаха;
– высокая способность к адгезии используется для образованию композитных материалов.
-быстрое его старение, но благодаря специальным добавкам (противостарителям – аминам, фенолам, газовой саже) его можно увеличить.
Химические свойства:
-не растворяется в щелочах;
-нейтрален к кислотам;
-не растворятся в кислотах(карбоновая, плавиковая, конц. соляная)
-разрушается азотной, газообразным, жидким, фтором и хлором;
-набухает в органических растворителях;
-стоек к спиртам;
-хлорирование, сульфирование, бромирование или фторирование придают полиэтилену каучуко-подобные свойства, улучшают химическую и тепловую стойкость.
– Сополимеризация с другими полеолефинами или полярными мономерами повышает его прозрачность, эластичность, адгезионные характеристики, а также стойкость к растрескиванию.

Основные виды полиэтилена

1. Полиэтилен низкого давления (ПНД) или высокой плотности(ПВП)

К полиэтиленам высокой плотности ПНД (ПЭВП) (HDPE) относят материал с плотностью свыше 0.941 г/см3.ПЭВП отличается низкой степенью ветвления молекул, а,

следовательно, большими межмолекулярными силами и прочностью на разрыв, что дает высокую прочность и небольшое относительное удлинение при разрыве. Так как ПВП обладает повышенной морозостойкостью (температура стеклования – 50С) и слабым межмолекулярным взаимодействием (отсутствуют полярные группы в цепи), он склонен к хладотекучести, то есть при постоянной нагрузке со временем происходит изменение размеров.

Полиэтилен низкого давления, в отличие от ПВД, имеет более высокую хрупкость и температуру размягчения, но при этом не подходит для контейнеров горячего заполнения.

ПНД не пропускает влагу, стоек к маслам и жирам, не выделяет токсичные вещества в окружающую среду, безопасен для организма человека. При работе с ним не требуются особые меры предосторожности.

ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОГО ДАВЛЕНИЯ (ПНД)

Температура для плавления, °С

Температура для размягчения в воздушной среде по Вика, °С

Плотность насыпания гранул, г/см3

Плотность насыпания порошка, г/см3

Разрушающее напряжение при изгибе, МПа

Предел прочности при срезе, МПа

Твердость по вдавливанию под заданной нагрузкой шарика, МПа

Удельное электрическое поверхностное сопротивление, Ом

Удельное электрическое объемное сопротивление, Ом·см

Водопоглощение за 30 суток, %

Тангенс угла диэлектрических потерь при частоте 1010 Гц

Читайте также:
10 видов работ в ремонте когда без помощника не обойтись

Диэлектрическая проницаемость при частоте 1010 Гц

Удельная теплоемкость при 20-25 °С, Дж/кг·°С

Линейный коэффициент термического расширения, /°С

Полиэтилен низкого давления (ПНД) или высокой плотности (ПВП) — это жесткий продукт с плотностью более 0.941 г/см кубических. Для получения ПНД применяются три технологии: суспензионная, растворная и газофазная. Полиэтилен НД жестче и проще ПВД, но менее прозрачен. Полиэтилен низкого давления устойчив к высоким температурам, различным маслам и химикатам, но, по сравнению с ПВД, менее стоек к парам и воде.

Особенностью структуры полиэтилена низкой плотности, является большое число коротких и длинных ответвлений, которые не позволяют макромолекулам образовывать кристаллическую структуру. Связи мономерами между слабы, а значит, полимер отличается невысокой устойчивостью на разрыв и повышенной пластичностью, высокой текучестью в расплаве.

Область применения ПНД :
– контейнеры, и пленки для обертки и изготовления пластиковых пакетов;
-укрывной материал и пленки для мусорных мешков (толщина до 250 микрон)
– пакеты для покупок (толщина от 30 до 65 микрон).

2. Полиэтилен высокого давления (ПВД) или низкой плотности (ПНП)

ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОГО ДАВЛЕНИЯ (ПВД)

Температура для плавления, °С

Разрушающее напряжение при изгибе, Па (кгс/см2)

Предел прочности при срезе, Па (кгс/см2)

Предел прочности при разрыве, не менее Па (кгс/см2)

Твердость по вдавливанию под заданной нагрузкой шарика, Па(кгс/см2)

Удельное электрическое поверхностное сопротивление, Ом

Удельное электрическое объемное сопротивление, Ом·см

Водопоглощение за 30 суток, %

Тангенс угла диэлектрических потерь при частоте 1010 Гц

Диэлектрическая проницаемость при частоте 1010 Гц

Температура хрупкости, не выше °С

Усадка при литье, %

Модуль упругости (секущий), Па (кгс/см2) для полиэтилена плотностью в г/см2

Область применения: изготовлении пленки для обертки, контейнеров и пластиковых пакетов. Пакеты из ПВД очень красивые – не шуршащие, глянцевые, выдерживают до двадцати кг.

3. Полиэтилен среднего давленис (ПСД) или средней плотности(ПСП)

Полиэтилены средней плотности ПСД (MDPE) имеют плотность от 0.926 до 0.940 г/см3. ПСД обладает хорошей устойчивостью к ударам и на излом, менее подвержен царапинам более устойчив к растрескиванию, чем ПВД.

Характеристики ПСД практически ни чем не отличаются от характеристик ПНД, в общем, это идентичные виды полиэтилена, не хуже и не лучше друг друга.

ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА СРЕДНЕГО ДАВЛЕНИЯ (ПСД)

Температура для плавления, С

Температура для размягчения, С

Молекулярная масса промышленных марок, 10-4

Модуль упругости при изгибе, МПа

Разрушающее напряжение при изгибе, МПа

Разрушающее напряжение при растяжении, МПа

Ударная вязкость, кДж/м2

Твердость по Бринеллю, МПа

Удельная теплоемкость, кДж/(кг*К)

Коэффициент температуропроводности, Вт/(м*К)

Коэффициент линейного расширения, 104 град-1

Показатель текучести расплава, г/10 мин

Область применения: – обычная и термоусадочная пленка, мешки, хозяйственные сумки, винтовые колпачки.

4. Линейный полиэтилен высокго давления (ЛПВД) низкой плотности

Линейный полиэтилен низкой плотности (ЛПНП, LLDPE) -удельный вес- 0.915–0.925 г/см3. По своей структуре, аналогичен полиэтилену ПНД. Он также имеет линейную структуру, но с гораздо более многочисленными и длинными боковыми ответвлениями, обычно получают при сополимеризации с короткоцепочечными α-олефинами (1-бутен, 1-гексен, 1-октен).

По сравнению с ПЭНП линейный полиэтилен более прочен на разрыв, устойчивее к удару и проколу. Этим линейный полиэтилен сильно напоминает ПЭВП, обладая при этом столь же низкой плотностью и высокой пластичностью, как ПЭНП. При всем при этом линейный полиэтилен требует особой, более сложной технологии переработки.

Основные преимущества линейного полиэтилена низкой плотности заключаются в: высокой химической стойкости; высоких эксплуатационных характеристиках, как при достаточно высоких, так и низких, температурах; большой устойчивости к растрескиванию; улучшенной стойкости к проколу.

Линейный полиэтилен обладает самыми высокими физико-химическими показателями.

ЛПНП отличается наиболее высокими значениями прочности при растяжении и удлинения при разрыве. Достаточно высокая температура плавления дает возможность применять литейный полиэтилен для фасовки горячих продуктов. Благодаря присутствию большого количества боковых коротких ответвлений, при деформации скользящих друг по другу и не развивающих при этом внутренних значительных напряжений, ЛПВД характеризуется отличной эластичностью расплава. Что позволяет получать достаточно тонкую пленку от6-25 мкм. ЛПНП менее прозрачен, чем другие виды полиэтилена. Чтобы получить более прозрачный ЛПВД в него вводят оптические специальные добавки.

ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ЛИНЕЙНОГО ПОЛИЭТИЛЕНА ВЫСОКОГО ДАВЛЕНИЯ (ЛПВД)

Предел текучести при растяжении (50 мм/мин), МПа

Модуль упругости при растяжении (1 мм/мин), МПа

Относительное удлинение при растяжении (50 мм/мин), более %

Температура для плавления, С

Растворимость, выше °С

Область применения:
– ЛПВД идет на производство пленок (стретч-пленка, изготавливаемая методом раздува и на каст-линиях, многослойная термоусадочная пленка и пленка для ламинации).
– используется в производстве литьевых изделий, кабельной изоляции и труб.
Отдельно можно выделить такой продукт как “Сэвилен” превосходит полиэтилен по прозрачности и эластичности при низких температурах, сопротивлению проколу, устойчивости к изгибу и растрескиванию, обладает повышенной адгезией к различным материалам. Свойства материала меняются в зависимости от содержания винилацетата (варьируется в диапазоне 5-60%).
Из сэвилена с содержанием винилацетата до 15% изготавливают пленки с высокой прозрачностью, более низкой, чем у полиэтилена, температурой плавления и барьерными свойствами по отношению к газам. Сэвилен с содержанием винилацетата 21-30 % используется в качестве покрытия упаковочных бумаги и картона.

Читайте также:
Как правильно выбрать пластиковые окна?

5.Сшитый полиэтилен

Сшитый полиэтилен (PEX) – полиэтилен с большим молекулярным весом, получаемый из обычного ПНД путем сшивания его линейных молекул при помощи ионизирующего излучения (PE-Xc), органсилоксанов (PE-Хb) или пероксидов (РE-Xa) с помощью повышенного давления, которое вызывает образование поперечных дополнительных связей. Сшитый полиэтилен имеет большую прочность и теплостойкость, не течет при нагреве. Применяется PEX для систем водоснабжения, трубопроводов, отопления.

Сшитый полиэтилен делится на 4 вида:

  • пероксидный;
  • азотный;
  • силановый;
  • радиационный.

Из шитых полиэтиленов больше всего используется Rex – b, так как он более экономичен в производстве.

6.Вспененнный полиэтилен

Пенополиэтилен—Производство осуществляется за счет высокого давления, при котором происходит вспенивание приготовленной смеси (бутан + пропан). Особенности пенополиэтилена Низкая теплопроводность. Это качество материала прекрасно используется для теплоизоляции зданий и сооружений. Пенополиэтиелен бывает : «простым», фольгированным, армированным (например, стеклотканью, применяется для теплиц) и др. Все это достигается путем введения в состав различных добавок. Водооталкивающие позволяет использовать для защиты поверхностей, подвергающихся постоянному воздействию жидкостей. Дополнительные плюсы материала: высокие звукоизоляционные качества, прост в использовании, способность снижать вероятность воспламенения других материалов, долговечность, эластичность, износостойкость. Не повреждается насекомыми, грызунами, плесенью или грибком. Некоторые виды продукции могут эксплуатироваться в диапазоне температур =240 0С (от — 60 до + 180). Возможность ламинирования практически любым материалом (пленками, лавсаном, бумагой и другими).

Материал выпускается толщиной от 0,5 мм до 2 см, что позволяет его использовать универсально. Самое распространенное использование – для снижения теплопотерь различными конструкциями (тепловая изоляция), изделия с односторонним фольгированием отлично подходят для крепления на стену сзади радиаторов отопления, эффективность приборов при этом повышается на 1/3.

7.Хлорсульфированный полиэтилен (ХСП)

Хлорсульфированный полиэтилен (ХСП) – каучукоподобный полиэтилен, получаемый при его взаимодействии с сернистым ангидридом и хлором. Хлорсульфированный полиэтилен растворяется в хлорированных углеводородах и ароматических растворителях (ксилоле, толуоле), плохо – в ацетоне и не растворятся в алифатических углеводородах, разрушается под действием уксусной кислоты, ароматических и хлорированных углеводородов. Используется хлорсульфированный полиэтилен для получения износостойких и коррозионностойких покрытий полов, а также клеев и герметиков. На основе ХСП получают атмосферостойкие и коррозионностойкие краски и лаки для защиты бетона, металла и других материалов от химически агрессивных и атмосферных воздействий.

8.Сверхмолекулярный полиэтилен (СВМП)

Сверхвысокомолекулярный полиэтилен (СВМП)— высокопрочный полиэтиленом для экстремальных условий, получаемый при низком давлении с достаточно высокой степенью полимеризации. Отличительные особенности: морозостойкость, коррозионная стойкость, ударопрочность, стойкость к абразивному воздействию, низким коэффициентом трения, физиологической инертностью. СВМП образует высокопрочные нити, которые используются для изготовления сверхпрочных волокон, ударопрочных, маслобензостойких резинотехнических композиционных материалов, защитных полимерных покрытий, удлиняющих эксплуатационный срок изделий в два раза. СВМП полиэтилен используется для изготовления деталей и элементов конструкций, подвергающихся ударной нагрузке, фильтров для пищевой и химической промышленности, сверхпрочных тканей и нитей, а также изготовления спортивного инвентаря.

9. Наиболее распространенные полиэтиленовые изделия, характеристики и методы их производства.

Двухосно-ориентированные пленки.

Полиэтиленовая пищевая пленка.

Полиэтиленовые упаковочные пакеты

Воздушно-пузырьковая пленка

Обычно оба устройства объединены в одну машину, которая также имеет механизмы для обрезания, наматывания рулона и удаления отходов.
Формирование пузырьковых камер осуществляется при повышенной температуре. Камеры не сообщаются друг с другом: поэтому при повреждении одного пузырька остальные сохраняют целостность и защитные свойства.
Двухслойная пленка состоит всего из двух слоев. Нижний слой представляет собой лист полиэтилена низкой плотности. Он является основой. На него крепится верхний лист, из которого и формируются пузырьки.
Трехслойная пленка включает в себя еще один, покровный слой полиэтилена, который делает пленку прочнее. Самая прочная пленка – четырехслойная: ее используют только для упаковки хрупких и особо дорогих изделий.
При необходимости на гладкий слой пленки можно нанести изображение.

Перфорированная воздушно-пузырьковая пленка Перфорация на пленке необходима для легкого отрывания ровных кусков от рулона. Она имеет вид небольших насечек, ряды которых расположенных на определенном расстоянии друг от друга (например, 1 метр).
Классификация воздушно-пузырчатых пленок

  • бесцветные с различным количеством слоев;
  • воздушно-пузырьковые из вспененного полиэтилена с низкой горючестью;
  • воздушно-пузырьковые пленки со светостабилизирующими добавками – не разрушаются под воздействием ультрафиолетового излучения солнечного света. Такие пленки используются при устройстве теплиц и парников;
  • пузырьковые пленки с металлизированным покрытием – используются в строительстве в качестве теплоизоляционного материала;
  • пленки, комбинированные с бумагой – имеют еще один нижний слой из плотной бумаги или тонкого картона. Комбинированные пленки используются для защиты стекла, зеркал и других плоских предметов;
  • пленки с добавлением антифога – вещества препятствующего оседанию конденсата в виде капель. Их используют для строительства парников и теплиц. Кроме того, из таких пленок изготавливают покрывала для бассейнов.
Читайте также:
Самые грубые ошибки, которые допускают, оставляя дом на зиму без отопления

Полиэтилен высокого давления (ПЭВД)

Полиэтилен высокого давления (расшифровка ПВД или ПЭВД – аббревиатуры) – это термопластичный полимер, получаемый методом полимеризации углеводородного соединения «этилен» (этен) под действием высоких температур (до 180 0 ), давления до 3000 атмосфер и с участием кислорода. Также может называться как полиэтилен низкой плотности (ПНП или ПЭНП), так как имеет сравнительно слабые внутримолекулярные связи и, следовательно, более низкую плотность, чем полимеры других видов. Также для его обозначения применяется сокращение LDPE – английский эквивалент ПЭНП.

Полиэтилен низкой плотности (LDPE) Процесс его изготовления протекает при очень высоком давлении от 100 до 300 мПа и температуре 100–300 °С, поэтому обозначается так же, как полиэтилен высокого давления (ПЭВД).

Макромолекулы полиэтилена высокого давления (n1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Особенности ПВД (ПНП)

Химические и физические характеристики

Полиэтилен высокого давления (ПВД) изготавливается в виде гранул ПВД. Имеет плотность 900-930 кг/м3, температуру плавления 100-115 0С и температуру хрупкости до -120 0С, а также малое водопоглощение (около 0,02 % за месяц) и высокую пластичность. Эти физико-химические характеристики ПВД как вещества объясняют следующие свойства изготовленных из него предметов и материалов:

  • Мягкость и гибкость изделий из полиэтилена низкой плотности,
  • Возможность создания из гранул ПВД особенно гладких и блестящих поверхностей,
  • Устойчивость предметов из ПВД к механическим разрушениям путем разрыва и удара, а также к деформациям растяжения и сжатия,
  • Высокую прочность ПВД (пэнп) при воздействии низких температур,
  • Влаго- и воздухонепроницаемость ПЭНП -изделий,
  • Устойчивость ПЭВД к воздействию света, в частности к солнечному излучению.

ВАЖНО! Использование полиэтилена высокого давления (ПВД) абсолютно безопасно как для человека, так и для состояния окружающей среды, так как он не выделяет никаких токсичных веществ. Именно поэтому ПЭВД может использоваться даже для контакта с продуктами питания и при изготовлении детских товаров.

Отличие ПВД от других полимеров

Полиэтилены (ПВД, ПНД и др.) – это материалы, которые изготавливаются из одного мономера, но могут быть различной плотности в зависимости от особенностей изготовления. Этот показатель сильно влияет на свойства полиэтилена: увеличение плотности ведет к повышению жесткости, твердости, прочности изделий и их химической стойкости. Но при этом падают другие показатели: ударопрочность, возможность растяжения при разрыве, проницаемость для жидкостей и газов. Так, ПВД имеет существенные отличия от других подобных полимеров:

  • ПВД и ПНД. Полиэтилен высокого давления не зря называется еще и полиэтиленом низкой плотности (ПНП или ПЭНП). По сравнению с ним такие твердые полимеры, как ПНД (полиэтилен низкого давления), быстрее поддаются разрывам под действием удара, чаще ломаются на морозе и растрескиваются при увеличении нагрузки, хотя и обладают большей стойкостью к воздействию радиации, щелочей и кислот. Гранулы ПВД и изделия из них гораздо лучше переносят ультрафиолетовое излучение, а также имеют более красивую глянцевую поверхность.
  • ПВД и ЛПНП.Другой полимер – ЛПНП (линейный полиэтилен), как и ПНД, имеет жесткую структуру, но по своим техническим характеристикам находится между ПВД и ПНД. Он более стоек к химически агрессивным средам, чем ПЭНП, и имеет большую устойчивость к проколу и растрескиванию, чем ПНД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена, приведены в таблице.

Таблица. Показатели, характеризующие строение полимерной цепи различных видов полиэтилена

Общее число групп СН3 на 1000 атомов углерода:

Что такое полиэтилен и в чем отличия его основных видов, особенности получения и применения

Оглавление

Полиэтилен – это самый часто встречающийся в мире полимер, и его популярность объясняется большим перечнем физико-эксплуатационных характеристик и массой практичных бытовых и промышленных свойств. А меняя показатель давления, применяемого для получения того или иного вида полиэтилена, параметры этого полимера можно варьировать в широком спектре.

Читайте также:
Как стыковать ковролин, чтобы он не пошел волнами

Что такое полиэтилен?

Полиэтилен (ПЭ, PE) – полимер, который добывается путем термополимеризации этилена, в свою очередь получаемого из газа и нефти путем химического реагирования. В быту полиэтиленом называют пластмассу практически в любом ее виде. Этот синтетический полимер в наиболее потребляемых его видах производится передовыми компаниями, специализирующимися на добыче нефти и газа. В частности, в России его синтезируют на заводах «Роснефть», «Газпром», «Лукойл», «Нижнекамскнефтехим». Серийные марки ПЭ производят в виде микрогранул не более 2-5 мм, однако, есть разновидность этого полимера, поступающая в промышленный обиход в виде порошка. Сырьем для выработки полиэтилена служит бесцветный газ этилен, его особенность – характерный сладковатый запах.

Этилен может растворяться в этаноле и в воде при некоторых условиях, а для синтезирования полиэтилена применяют только газ, прошедший глубокую очистку – до 99,8%. Посторонние примеси препятствуют нормальному течению реакции синтеза, а материал может поменять свой окрас.

Как появился полиэтилен

Полиэтилен известен уже более века. Его изобретателем признан инженер Ганс фон Пехманн, который сделал свое открытие в 1899 году в Германии. Однако в те годы полезное изобретение не было воспринято «на ура», ему долгое время не могли найти применения. Лишь в конце 1920-х годов синтез ПЭ был налажен. Но сначала это не был полиэтилен в привычном для современности понимании: первоначально проводился синтез низкомолекулярного парафинового вещества – олигомера полиэтилена. Только в 1936 году им удалось разработать меры для успешного синтеза ПЭ низкой плотности и получить на него патент. И в 1938 году было запущено синтезирование промышленного ПЭ, сферой применения которого на начальном этапе стало производство проводов для телефонов, а чуть позже – выпуск упаковки для продовольственных товаров.

Формула полиэтилена

ПЭ является органическим веществом, имеющим длинные «тела» молекул. Химический состав молекулы этого полимера имеет простой вид и визуализируется как цепочка из атомов углерода, к каждому из которых прикреплены по две молекулы водорода. Формула полиэтилена может быть записана как

где n – степень полимеризации.

Полиэтилен синтезируется в двух вариантах, получаемых из СН2=СН2, отличных по структуре, а значит, и по свойствам. В одной из модификаций мономеры связываются в линейные цепи с показателем полимеризации выше 5000. В другой – ответвления из 4-6 атомов углерода крепятся к цепи хаотично. Для синтеза линейных полиэтиленов используются специальные катализаторы, выработка происходит при температурном режиме до 150°С и давлении до 20 атмосфер.

Получение полиэтилена

Принцип построения макромолекул полиэтилена – линейный, они также имеют некоторое число боковых ответвлений. Способ полимеризации материала отражается на свойствах, которыми будет обладать готовый ПЭ. Его получение возможно в двух химических концепциях:

  • С помощью радикальной полимеризации этилена в газовой среде – так получают ПВД – это полиэтилен высокого давления. Синтезируется в автоклаве под окисляющим воздействием О2 или пероксидов. Сила давления – 25МПа, показатель температуры обычно не превышает 70°С. Используется двухступенчатый ректор: в первой стадии смесь сильнее разогревают, а во второй – полимеризуют при ужесточенных показателях – температуре до 300°С и давлении до 250 МПа.
  • Путем ионной термополимеризации этилена в гексановом растворе – так синтезируется полиэтилен сниженного давления. Раствор этилена в бензине доводят до температуры 180-250°С. Показатель давления, необходимый для процесса – 3,4-5,3 МПа, катализатор воздействует на смесь в течение 15 минут. Степень готовности полиэтилена определяют по испарению растворителя.

Общий процесс выработки ПЭ можно охарактеризовать такими основными технологическими фазами:

  • соединение этилена с газовой средой и кислородом;
  • сжатие газово-этиленовой субстанции в двух стадиях;
  • собственно, полимеризация массы;
  • отделение непосредственно ПЭ от этилена, не вступившего в реакцию;
  • гранулирование продукта.

Виды полиэтилена

Полиэтилен низкого давления – он же полиэтилен высокой плотности (ПЭВП). Для этого вида полиэтилена характерно малое число молекулярных ветвей, производят его при сниженном уровне давления, применяя суспензионный, растворный и газофазный техпроцессы полимеризации. ПЭНД обычно получается бесцветным и может отгружаться в любой подходящей таре – от мешков до цистерн. Используется для изготовления канистр, контейнеров для растворителей и мусора, отличается повышенной прочностью (к примеру, пакет из ПЭНД может выдержать до 20 кг).

Полиэтилен высокого давления (низкой плотности) ПЭВД или ПЭНП. Производится при повышенном давлении, а особенность его структуры – в сочетании продольных и укороченных ответвлений, которым богата формула ПЭВД. Производят его чаще всего в форме бесцветных гранул. Самая известная сфера применения этого вида полиэтилена – выработка оберточного материала, производство пластиковых пакетов и емкостей.
И хотя основными используемыми в промышленности видами полиэтилена являются ПЭНД и ПЭВД, есть другие формы производства этого полимера.

Читайте также:
Как оформить красивыый фасад с плоской крышей

Линейный полиэтилен – это низкоплотный ПЭ с большим числом коротких ответвлений в молекулярной цепи. При растяжении и разрыве имеет максимальные значения прочности и растяжения. Плавится линейный ПЭ при повышенном температурном показателе, что делает его идеальным сырьем для упаковки под горячие продукты. Многочисленные боковые укороченные ветви, которыми характеризуется структура его молекул, делает особенно высокой эластичность расплава, и это свойство используют для произведения тонкой пленки. По сравнению с другими видами ПЭ наименее прозрачен, бывает разных уровней плотности.

Пенополиэтилен – материал с пористой структурой, что делает его хорошим вариантом средства для гидро- и теплоизоляции. В качестве материла для изоляции, вспененный полиэтилен производят в виде гибких листов или жгутов.

Сшитый полиэтилен – ПЭ, молекулы которого сшиты поперек, и за счет этих поперечных связей звенья его молекул образуют трехмерную сеть. Эта особенность наделяет ПЭ жесткостью и термоустойчивостью.

Свойства полиэтилена

Химические свойства

ПЭ практически газонепроницаем, а его химическая устойчивость зависит от плотности полиэтилена. Он инертен ко всем солевым растворам и концентратам, растворителям и отдельным сильным кислотам, маслам и смазывающим веществам, не взаимодействует с органическими растворителями. Но при показателе выше 60°С полиэтилен поддается воздействию азотной и серной кислот в концентрации 50%, не устойчив к хлору и брому.

Физические свойства

ПЭ – материал достаточной жесткости, эластичный, морозоустойчивый (выдерживает температуру до -70°С), гибкий. Обладает высокой вязкостью, диэлектрик, не увлажняется жидкостями. Полиэтилен – нейтральное вещество, бесцветное, но непрозрачное в толстом слое, не имеющее запаха и вкуса. Температура плавления полиэтилена в среднем 105-115°С, но точный показатель колеблется в зависимости от вида ПЭ.

Наименование физических характеристик Средние показатели ПЭ
Плотность, г/см3 0,955 – 0960
Напряжение при растяжении, МПа 22 – 23
Температурная амплитуда применения от -50°С до 80°С
Удлинение при разрыве, % 300-600
Ударная вязкость, кДж/м2 12
Теплопроводность, В/(м·°С) 44·10-2
Теплоемкость при 20-25 °С, Дж/кг·°С 1880
Кристаллизация при температуре от -60 °С ­до -369 °С

Эксплуатационные характеристики

При температуре выше 80°С полиэтилен начинает разрушаться. Без добавления спецдобавок и стабилизаторов материал абсолютно неустойчив к УФ-излучению, подвержен фотодеструкции. ПЭ не источает в окружающую среду вредные вещества, но разлагаться самостоятельно может на протяжении десятилетий. Стоит учитывать пожароопасность материала и его свойство поддерживать горение.

Физические свойства полимера и характер его эксплуатации будут разниться в зависимости от вида ПЭ.

Остановимся на самых распространенных его типах – ПЭВД и ПЭНД.

Вид полиэтилена Мол. масса, а.е.м. Плотность, кг/м3 Температурный показатель плавления, °С Показатель упругости, МПа Кристалличность Относ. удлинение, % Температура стеклования, °С Показатель усадки при обработке
ПЭВД 30 тыс. – 400 тыс. 913-930 103-115 100-200 60% 100-800 -4 1,5-2%
ПЭНД 50 тыс. –1 млн 940-970 120-140 400-1250 70-90% 100-1200 120

Применение полиэтилена

Полиэтилен – самый известный и востребованный из-за своей практичности и универсальности полимер в мире. Выявлена масса способов переработки пластмассы, которые позволяют производить изделия из него.

Полиэтилен обвиняют в неэкологичности, на самом же деле этот полимер один из наиболее безопасных, неприхотливых, хорошо поддается переработке, после которой нередко используется повторно.

Рассмотрим самые распространенные формы применения полиэтилена.

  • Пленка. Этот универсальный материал повсеместно используют в виде разнофактурных пленок в промышленности, на производстве, в строительных работах. Производится она с помощью экструдера из гранулированного полиэтилена, который доводят до нужной температуры, плавят, после чего формируют.
  • Трубы из полиэтилена используют для выкладывания инженерных сообщений (канализация, газо- и водопроводы) и коммуникаций. Процесс их изготовления идентичен этапам производства пленки, за исключением конструкции экструдера.
  • Полиэтиленовые пакеты – легкая и удобная тара, в которой потребители переносят вещи и продукты. Сегодня невозможно представить свою жизнь без прозрачных пакетов для фасовки, «маек», практичных мусорных пакетов, пакетов с логотипами супермаркетов или торговых точек.
  • Упаковка. Современная тара для продуктов питания также производится преимущественно из полиэтилена – бутылки, контейнеры, пластиковые пакеты и одноразовая посуда.
  • Нельзя не упомянуть о широком производстве одноразовых полиэтиленовых перчаток, которые нашли широкое применение в промышленности, медицине и быту.
  • Полиэтиленовые листы, производимые из ПЭВП или ПЭНП, являются отличной альтернативой древесине и стеклу, имеют небольшой вес и высокую жесткость. ПЭ прессуется в прочные листы разной толщины с высокой термостойкостью.
Читайте также:
Рекомендации для выбора длинной тумбочки для гостинной

Продукты из полиэтилена с каждым годом находят все больше сфер для своего применения, занимая ранее пустующие области рынка. Включая в свой производственный процесс изделия из этого полимера, многие предприятия разных отраслей промышленности существенно облегчают его, делая максимально рентабельным. Статистические данные прогнозируют и дальнейший рост популярности полиэтилена, а значит, его производство в товарных масштабах будет только расти.

Смотрите также по теме «Что такое полиэтилен и в чем отличия его основных видов, особенности получения и применения»:

  • Полипропилен (РР)
  • Поливинилхлорид (PVC)
  • Поливинилденфторид (PVDF)
  • Этилен-трифторхлорэтилен (E-CTFE)

Полиэтилен (РЕ) получают полимеризацией газа этилена при высоком и низком давлении. Полиэтилен, получаемый при высоком давлении (150-300МПа, 150-320˚С), называется полиэтилен высокого давления PEBD (или низкой плотности LDPE ), получают его полимеризацией этилена в автоклавном или трубчатом реакторе. При низком давлении ( PEHD (или высокой плотности HDPE ). Различными способами получают и другие модификации полиэтилена (линейный, высокомолекулярный, сверхвысокомолекулярный и т.д.), отличающиеся более высокими эксплуатационными характеристиками.

На практике применение различных видов полиэтилена обусловлено их свойствами. Так, полиэтилен высокого давления имеет большую мягкость и пластичность, чем низкого давления, поэтому применяют его в основном в ротационном формовании или литье, например, для производства упаковочного материала. Также ротационным формованием изготавливают емкости небольшого объема. Полиэтилен низкого давления HDPE более прочный материал. Именно HDPE мы применяем на нашем предприятии для изготовления резервуаров объемом до 250м 3 .

Физические свойства полиэтилена ПНД (HDPE).

Полиэтилен HDPE представляет собой твердый материал, с воскообразной на ощупь поверхностью. HDPE обладает высокой вязкостью, гибкостью, растяжимостью и эластичностью. Имеет малую плотность – 0,95 – 0,96 г/см 3 , поэтому материал легче воды. Отдельные марки не теряют своих свойств в интервале температур от -250 до +90 °С, например марка Polystone M производства Rochling . Материал также обладает хорошими диэлектрическими свойствами, а стойкость к радиоактивным излучениям одна из самых высоких среди полимерных материалов. Полиэтилен физиологически безвреден и годен к контакту с пищевыми продуктами.

В таблице приведены некоторые характеристики ПНД марок PE -80 и PE -100 производства Simona , Германия.

Напряжение при растяжении, МПа

Температурный диапазон применения, °С

Удлинение при разрыве, %

Модуль упругости при растяжении, МПа

Ударная вязкость, кДж/м 2

Удельная теплоемкость при 20-25 °С, Дж/кг·°С

Химические свойства полиэтилена HDPE (ПНД)

Полиэтилен устойчив к органическим, некоторым неорганическим кислотам, щелочам, растворами солей, спиртосодержащим продуктам, минеральным и органическим маслам. Также как полипропилен, полиэтилен не стоек к контакту с сильными неорганическими окислителями (HNO3, H2SO4), галогенами – даже при незначительных нагрузках происходит растрескивание материала. При длительном контакте с ароматическими соединениями и галогенированными углеводородами происходит набухание материала. В принципе химическая стойкость полиэтилена в том же температурном диапазоне схожа со стойкостью полипропилена.

Обобщенная устойчивость ПНД к химическому воздействию приведена в таблице химической стойкости. Для определения устойчивости полиэтилена к контакту к различными химическими растворами при температурных, механических и прочих нагрузках наши специалисты проведут дополнительные расчеты. Для расчета химической устойчивости и подбора материала обратитесь, пожалуйста, к нашим специалистам в разделе Сделать заказ или через форму обратной связи.

По горючести ПНД, также как полипропилен, отнесен, согласно стандарту DIN 4102, к классу В: В1 – трудно возгораемые и В2 – нормально возгораемые. Температура самовоспламенения около 350°С.

По существу в химическом составе полиэтилена содержится только углерод и водород. Поэтому практически единственными веществами, выделяющимися при его горении, являются углекислый газ, монооксид углерода (угарный газ), вода и незначительное количество сажи. Соотношение углекислого и угарного газа зависит от температуры, вентиляции и доступа кислорода при горении. Прекращение горения производится водой.

Для повышения некоторых характеристик HDPE, таких как электропроводность, стойкость к ультрафиолетовому излучению, в его состав добавляют определенные присадки (стабилизаторы).

Отличие ПНД от других термопластов состоит в способности сохранять свои свойства при больших отрицательных температурах. Этим объясняется более широкое применение полиэтилена при изготовлении резервуаров, чем полипропилена.

Полиэтилен, виды, характеристики, свойства и получение

Полиэтилен, виды, характеристики, свойства и получение.

Полиэтилен – термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы.

Описание и характеристики полиэтилена:

Полиэтилен – термопластичный полимер этилена, относится к классу полиолефинов. Также называется политеном.

Полиэтилен является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода . Таким образом, молекула полиэтилена имеют простую химическую структуру и представляет собою цепочку атомов углерода , к каждому из которых присоединены две молекулы водорода.

Читайте также:
Как оформить красивыый фасад с плоской крышей

Химическая формула полиэтилена2H4)n. Молекулярный вес – до 500 000 г/моль.

Химическая формула этилена, из которого производится полиэтилен, C2H4. Рациональная формула этилена CH2=CH2.

В свою очередь полиолефины представляют собой класс высокомолекулярных соединений (полимеров), получаемых из низкомолекулярных веществ – олефинов (мономеров) – непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Они вырабатываются из нефти или природного газа путём полимеризации одинаковых (гомополимеризации) или разных (сополимеризации) мономеров в присутствии катализатора.

Полиэтилен внешне представляет собой твердую массу белого цвета (тонкие листы прозрачны и бесцветны).

Существует две модификации полиэтилена: линейный и нелинейные полиэтилен. Они отличаются друг от друга по структуре и соответственно по свойствам. В первой –линейной форме мономеры связаны в линейные цепи со степенью полимеризации обычно 5000 и более. Они не имеют боковых ответвлений от основной цепи. В другой – нелинейной форме имеются многочисленные боковые ответвления мономеров, которые присоединены к основной цепи случайным способом.

Полиэтилен проявляет различные свойства. Разнообразие свойств полиэтилена можно объяснить его молекулярной структурой, молекулярной массой и степенью кристалличности, которая, в свою очередь, зависит от молекулярной массы и степени ветвления мономеров. Чем меньше разветвлены полимерные цепи и чем меньше молекулярная масса, тем выше кристалличность полиэтилена и тем более он плотный. Таким образом, существует линейная зависимость между плотностью и степенью кристалличности.

Полиэтилен самый распространенный из полимеров . Каждый год его производится более 100 миллионов тонн, что составляет 34 % от общего объема производства всех пластмасс .

Физические, химические и иные свойства полиэтилена:

– чистый полиэтилен имеет белый цвет, непрозрачен в толстом слое, тонкие листы прозрачны и бесцветны,

– кристаллизуется в диапазоне температур от -60 °С до минус 369 °С,

– не имеет запаха,

– имеет небольшой вес и различную плотность, которая зависит от разновидности и способа получения определенного вида полиэтилена,

– не чувствителен к удару, является амортизатором,

– имеет чрезвычайно низкую адгезию,

– обладает низким коэффициентом трения ,

– характеризуется абсолютной водонепроницаемостью. Он не смачивается водой и не впитывает ее. Однако кратковременная обработка полиэтилена кислотой или окислителями приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из полиэтилена можно склеивать,

– при нагревании до 80-120°С размягчается. Полиэтилен не способен противостоять высоким температурам, что не дает возможность использовать его в экстремальных условиях,

– характеризуется морозостойкостью. Полиэтилен может эксплуатироваться при температурах от -70°С до 100 °С. Некоторые виды полиэтилена сохраняют свои полезные свойства при температурах ниже -120°С. Морозостойкость полиэтилена зависит от разновидности и способа получения определенного вида полиэтилена,

– полиэтилен в виде тонких пленок обладает высокой гибкостью и прозрачностью, а в виде листов становится жестким и непрозрачным,

– устойчив к действию воды,

– обладает отличной пароизоляцией и гидроизоляцией. Но проницаем для кислорода и углекислого газа ,

– под действием солнечного света становится хрупким. В качестве добавки-стабилизатора от воздействия ультрафиолетового излучения используют углеродную сажу,

– является химически стойким веществом,

– не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой. Но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При температурах выше 60 °С серная и азотная кислоты также быстро его разрушают.

– при комнатной температуре не растворяется в органических растворителях. При температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных,

– горит голубоватым пламенем , со слабым светом и желтым кончиком, при этом издаёт запах парафина, то есть такой же, какой исходит от горящей свечи. Материал продолжает гореть на удалении источника пламени и производит потеки,

– из-за своей химической стойкости в естественной среде разлагается в течение порядка 500 лет, что существенно ухудшает экологическую обстановку. Поэтому для борьбы с загрязнением окружающей среды полиэтиленовыми пакетами около 40 стран ввели запрет или ограничение на продажу и (или) производство пластиковых пакетов. Однако если в состав полиэтилена ввести специальные добавки-деграданты время разложения в естественной среде составляет до 1,5-3 лет. Благодаря добавкам-биодеградантам он разлагается на элементарные составляющие: воду, углекислый газ и биомассу,

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: